ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1108.2989
217
141

A theory of multiclass boosting

15 August 2011
Indraneel Mukherjee
Robert Schapire
ArXiv (abs)PDFHTML
Abstract

Boosting combines weak classifiers to form highly accurate predictors. Although the case of binary classification is well understood, in the multiclass setting, the "correct" requirements on the weak classifier, or the notion of the most efficient boosting algorithms are missing. In this paper, we create a broad and general framework, within which we make precise and identify the optimal requirements on the weak-classifier, as well as design the most effective, in a certain sense, boosting algorithms that assume such requirements.

View on arXiv
Comments on this paper