ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1108.5838
105
729
v1v2v3v4 (latest)

Off-grid Direction of Arrival Estimation Using Sparse Bayesian Inference

30 August 2011
Zai Yang
Lihua Xie
Cisheng Zhang
ArXiv (abs)PDFHTML
Abstract

This paper is focused on solving the narrowband direction of arrival estimation problem from a sparse signal reconstruction perspective. Existing sparsity-based methods have shown advantages over conventional ones but exhibit limitations in practical situations where the true directions are not in the sampling grid. A so-called off-grid model is broached to reduce the modeling error caused by the off-grid directions. An iterative algorithm is proposed in this paper to solve the resulting problem from a Bayesian perspective while joint sparsity among different snapshots is exploited by assuming the same Laplace prior. Like existing sparsity-based methods, the new approach applies to arbitrary sensor array and exhibits increased resolution and improved robustness to noise and source correlation. Moreover, our approach results in more accurate direction of arrival estimation, e.g., smaller bias and lower mean squared error. High precision can be obtained with a coarse sampling grid and, meanwhile, computational time is greatly reduced.

View on arXiv
Comments on this paper