34
4

Simultaneous Inference of Covariances

Abstract

We consider asymptotic distributions of maximum deviations of sample covariance matrices, a fundamental problem in high-dimensional inference of covariances. Under mild dependence conditions on the entries of the data matrices, we establish the Gumbel convergence of the maximum deviations. Our result substantially generalizes earlier ones where the entries are assumed to be independent and identically distributed, and it provides a theoretical foundation for high-dimensional simultaneous inference of covariances.

View on arXiv
Comments on this paper