115
179

Accurate Prediction of Phase Transitions in Compressed Sensing via a Connection to Minimax Denoising

Abstract

Compressed sensing posits that, within limits, one can undersample a sparse signal and yet reconstruct it accurately. Knowing the precise limits to such undersampling is important both for theory and practice. We present a formula that characterizes the allowed undersampling of generalized sparse objects. The formula applies to Approximate Message Passing (AMP) algorithms for compressed sensing, which are here generalized to employ denoising operators besides the traditional scalar soft thresholding denoiser. This paper gives several examples including scalar denoisers not derived from convex penalization -- the firm shrinkage nonlinearity and the minimax nonlinearity -- and also nonscalar denoisers -- block thresholding, monotone regression, and total variation minimization. Let the variables eps = k/N and delta = n/N denote the generalized sparsity and undersampling fractions for sampling the k-generalized-sparse N-vector x_0 according to y=Ax_0. Here A is an n\times N measurement matrix whose entries are iid standard Gaussian. The formula states that the phase transition curve delta = delta(eps) separating successful from unsuccessful reconstruction of x_0 by AMP is given by: delta = M(eps| Denoiser), where M(eps| Denoiser) denotes the per-coordinate minimax mean squared error (MSE) of the specified, optimally-tuned denoiser in the directly observed problem y = x + z. In short, the phase transition of a noiseless undersampling problem is identical to the minimax MSE in a denoising problem.

View on arXiv
Comments on this paper