ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1111.5239
107
115
v1v2v3 (latest)

Distributed Signal Processing via Chebyshev Polynomial Approximation

22 November 2011
D. Shuman
P. Vandergheynst
D. Kressner
ArXiv (abs)PDFHTML
Abstract

Unions of graph multiplier operators are an important class of linear operators for processing signals defined on graphs. We present a novel method to efficiently distribute the application of these operators. The proposed method features approximations of the graph multipliers by shifted Chebyshev polynomials, whose recurrence relations make them readily amenable to distributed computation. We demonstrate how the proposed method can be applied to distributed processing tasks such as smoothing, denoising, inverse filtering, and semi-supervised classification, and show that the communication requirements of the method scale gracefully with the size of the network.

View on arXiv
Comments on this paper