ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1111.5866
53
41

Particle-kernel estimation of the filter density in state-space models

24 November 2011
Dan Crisan
Joaquín Míguez
ArXivPDFHTML
Abstract

Sequential Monte Carlo (SMC) methods, also known as particle filters, are simulation-based recursive algorithms for the approximation of the a posteriori probability measures generated by state-space dynamical models. At any given time ttt, a SMC method produces a set of samples over the state space of the system of interest (often termed "particles") that is used to build a discrete and random approximation of the posterior probability distribution of the state variables, conditional on a sequence of available observations. One potential application of the methodology is the estimation of the densities associated to the sequence of a posteriori distributions. While practitioners have rather freely applied such density approximations in the past, the issue has received less attention from a theoretical perspective. In this paper, we address the problem of constructing kernel-based estimates of the posterior probability density function and its derivatives, and obtain asymptotic convergence results for the estimation errors. In particular, we find convergence rates for the approximation errors that hold uniformly on the state space and guarantee that the error vanishes almost surely as the number of particles in the filter grows. Based on this uniform convergence result, we first show how to build continuous measures that converge almost surely (with known rate) toward the posterior measure and then address a few applications. The latter include maximum a posteriori estimation of the system state using the approximate derivatives of the posterior density and the approximation of functionals of it, for example, Shannon's entropy. This manuscript is identical to the published paper, including a gap in the proof of Theorem 4.2. The Theorem itself is correct. We provide an {\em erratum} at the end of this document with a complete proof and a brief discussion.

View on arXiv
Comments on this paper