ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1112.4863
117
133
v1v2v3v4 (latest)

A Novel M-Estimator for Robust PCA

20 December 2011
Teng Zhang
Gilad Lerman
ArXiv (abs)PDFHTML
Abstract

We formulate a convex minimization to robustly recover a subspace from a contaminated data set, partially sampled around it, and propose a fast iterative algorithm to achieve the corresponding minimum. We establish exact recovery by this minimizer, quantify the effect of noise and regularization, explain how to take advantage of a known intrinsic dimension and establish linear convergence of the iterative algorithm. Our minimizer is an M-estimator. We demonstrate its significance by adapting it to formulate a convex minimization equivalent to the non-convex total least squares (which is solved by PCA). We compare our method with many other algorithms for robust PCA on synthetic and real data sets and demonstrate state-of-the-art speed and accuracy.

View on arXiv
Comments on this paper