ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1201.0327
31
87

Local Linear Regression on Manifolds and its Geometric Interpretation

1 January 2012
Ming-Yen Cheng
Hau‐Tieng Wu
ArXivPDFHTML
Abstract

High-dimensional data analysis has been an active area, and the main focuses have been variable selection and dimension reduction. In practice, it occurs often that the variables are located on an unknown, lower-dimensional nonlinear manifold. Under this manifold assumption, one purpose of this paper is regression and gradient estimation on the manifold, and another is developing a new tool for manifold learning. To the first aim, we suggest directly reducing the dimensionality to the intrinsic dimension ddd of the manifold, and performing the popular local linear regression (LLR) on a tangent plane estimate. An immediate consequence is a dramatic reduction in the computation time when the ambient space dimension p≫dp\gg dp≫d. We provide rigorous theoretical justification of the convergence of the proposed regression and gradient estimators by carefully analyzing the curvature, boundary, and non-uniform sampling effects. A bandwidth selector that can handle heteroscedastic errors is proposed. To the second aim, we analyze carefully the behavior of our regression estimator both in the interior and near the boundary of the manifold, and make explicit its relationship with manifold learning, in particular estimating the Laplace-Beltrami operator of the manifold. In this context, we also make clear that it is important to use a smaller bandwidth in the tangent plane estimation than in the LLR. Simulation studies and the Isomap face data example are used to illustrate the computational speed and estimation accuracy of our methods.

View on arXiv
Comments on this paper