ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.3771
58
11

Tightening MRF Relaxations with Planar Subproblems

14 February 2012
Julian Yarkony
R. Morshed
Alexander Ihler
Charless C. Fowlkes
ArXiv (abs)PDFHTML
Abstract

We describe a new technique for computing lower-bounds on the minimum energy configuration of a planar Markov Random Field (MRF). Our method successively adds large numbers of constraints and enforces consistency over binary projections of the original problem state space. These constraints are represented in terms of subproblems in a dual-decomposition framework that is optimized using subgradient techniques. The complete set of constraints we consider enforces cycle consistency over the original graph. In practice we find that the method converges quickly on most problems with the addition of a few subproblems and outperforms existing methods for some interesting classes of hard potentials.

View on arXiv
Comments on this paper