135
28
v1v2 (latest)

Support Vector Regression for Right Censored Data

Abstract

We develop a unified approach for classification and regression support vector machines for data subject to right censoring. We provide finite sample bounds on the generalization error of the algorithm, prove risk consistency for a wide class of probability measures, and study the associated learning rates. We apply the general methodology to estimation of the (truncated) mean, median, quantiles, and for classification problems. We present a simulation study that demonstrates the performance of the proposed approach.

View on arXiv
Comments on this paper