ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1203.3461
76
26

Robust Metric Learning by Smooth Optimization

15 March 2012
Kaizhu Huang
Rong Jin
Zenglin Xu
Cheng-Lin Liu
ArXivPDFHTML
Abstract

Most existing distance metric learning methods assume perfect side information that is usually given in pairwise or triplet constraints. Instead, in many real-world applications, the constraints are derived from side information, such as users' implicit feedbacks and citations among articles. As a result, these constraints are usually noisy and contain many mistakes. In this work, we aim to learn a distance metric from noisy constraints by robust optimization in a worst-case scenario, to which we refer as robust metric learning. We formulate the learning task initially as a combinatorial optimization problem, and show that it can be elegantly transformed to a convex programming problem. We present an efficient learning algorithm based on smooth optimization [7]. It has a worst-case convergence rate of O(1/{\surd}{\varepsilon}) for smooth optimization problems, where {\varepsilon} is the desired error of the approximate solution. Finally, our empirical study with UCI data sets demonstrate the effectiveness of the proposed method in comparison to state-of-the-art methods.

View on arXiv
Comments on this paper