Confounding Equivalence in Causal Inference
- CML

Abstract
The paper provides a simple test for deciding, from a given causal diagram, whether two sets of variables have the same bias-reducing potential under adjustment. The test requires that one of the following two conditions holds: either (1) both sets are admissible (i.e., satisfy the back-door criterion) or (2) the Markov boundaries surrounding the manipulated variable(s) are identical in both sets. Applications to covariate selection and model testing are discussed.
View on arXivComments on this paper