37
0

Testing stability in a spatial unilateral autoregressive model

Abstract

Least squares estimator of the stability parameter ϱ:=α+β\varrho := |\alpha| + |\beta| for a spatial unilateral autoregressive process Xk,=αXk1,+βXk,1+εk,X_{k,\ell}=\alpha X_{k-1,\ell}+\beta X_{k,\ell-1}+\varepsilon_{k,\ell} is investigated. Asymptotic normality with a scaling factor n5/4n^{5/4} is shown in the unstable case, i.e., when ϱ=1\varrho = 1, in contrast to the AR(p) model Xk=α1Xk1+...+αpXkp+εkX_k=\alpha_1 X_{k-1}+... +\alpha_p X_{k-p}+ \varepsilon_k, where the least squares estimator of the stability parameter ϱ:=α1+...+αp\varrho :=\alpha_1 + ... + \alpha_p is not asymptotically normal in the unstable, i.e., in the unit root case.

View on arXiv
Comments on this paper