ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1203.5028
35
9

Hybridizing PSM and RSM Operator for Solving NP-Complete Problems: Application to Travelling Salesman Problem

22 March 2012
O. Abdoun
C. Tajani
J. Abouchabaka
ArXivPDFHTML
Abstract

In this paper, we present a new mutation operator, Hybrid Mutation (HPRM), for a genetic algorithm that generates high quality solutions to the Traveling Salesman Problem (TSP). The Hybrid Mutation operator constructs an offspring from a pair of parents by hybridizing two mutation operators, PSM and RSM. The efficiency of the HPRM is compared as against some existing mutation operators; namely, Reverse Sequence Mutation (RSM) and Partial Shuffle Mutation (PSM) for BERLIN52 as instance of TSPLIB. Experimental results show that the new mutation operator is better than the RSM and PSM.

View on arXiv
Comments on this paper