ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1203.5914
42
25

A Framework for Automated Cell Tracking in Phase Contrast Microscopic Videos based on Normal Velocities

27 March 2012
Michael Möller
Martin Burger
P. Dieterich
A. Schwab
ArXivPDFHTML
Abstract

This paper introduces a novel framework for the automated tracking of cells, with a particular focus on the challenging situation of phase contrast microscopic videos. Our framework is based on a topology preserving variational segmentation approach applied to normal velocity components obtained from optical flow computations, which appears to yield robust tracking and automated extraction of cell trajectories. In order to obtain improved trackings of local shape features we discuss an additional correction step based on active contours and the image Laplacian which we optimize for an example class of transformed renal epithelial (MDCK-F) cells. We also test the framework for human melanoma cells and murine neutrophil granulocytes that were seeded on different types of extracellular matrices. The results are validated with manual tracking results.

View on arXiv
Comments on this paper