Parallel Spell-Checking Algorithm Based on Yahoo! N-Grams Dataset

Spell-checking is the process of detecting and sometimes providing suggestions for incorrectly spelled words in a text. Basically, the larger the dictionary of a spell-checker is, the higher is the error detection rate; otherwise, misspellings would pass undetected. Unfortunately, traditional dictionaries suffer from out-of-vocabulary and data sparseness problems as they do not encompass large vocabulary of words indispensable to cover proper names, domain-specific terms, technical jargons, special acronyms, and terminologies. As a result, spell-checkers will incur low error detection and correction rate and will fail to flag all errors in the text. This paper proposes a new parallel shared-memory spell-checking algorithm that uses rich real-world word statistics from Yahoo! N-Grams Dataset to correct non-word and real-word errors in computer text. Essentially, the proposed algorithm can be divided into three sub-algorithms that run in a parallel fashion: The error detection algorithm that detects misspellings, the candidates generation algorithm that generates correction suggestions, and the error correction algorithm that performs contextual error correction. Experiments conducted on a set of text articles containing misspellings, showed a remarkable spelling error correction rate that resulted in a radical reduction of both non-word and real-word errors in electronic text. In a further study, the proposed algorithm is to be optimized for message-passing systems so as to become more flexible and less costly to scale over distributed machines.
View on arXiv