ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1204.0274
43
17

Learning from Humans as an I-POMDP

1 April 2012
Mark P. Woodward
Robert J. Wood
ArXivPDFHTML
Abstract

The interactive partially observable Markov decision process (I-POMDP) is a recently developed framework which extends the POMDP to the multi-agent setting by including agent models in the state space. This paper argues for formulating the problem of an agent learning interactively from a human teacher as an I-POMDP, where the agent \emph{programming} to be learned is captured by random variables in the agent's state space, all \emph{signals} from the human teacher are treated as observed random variables, and the human teacher, modeled as a distinct agent, is explicitly represented in the agent's state space. The main benefits of this approach are: i. a principled action selection mechanism, ii. a principled belief update mechanism, iii. support for the most common teacher \emph{signals}, and iv. the anticipated production of complex beneficial interactions. The proposed formulation, its benefits, and several open questions are presented.

View on arXiv
Comments on this paper