ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1204.0641
30
0

Agreement in Directed Dynamic Networks

3 April 2012
Martin Biely
Peter Robinson
Ulrich Schmid
ArXivPDFHTML
Abstract

We study distributed computation in synchronous dynamic networks where an omniscient adversary controls the unidirectional communication links. Its behavior is modeled as a sequence of directed graphs representing the active (i.e. timely) communication links per round. We prove that consensus is impossible under some natural weak connectivity assumptions, and introduce vertex-stable root components as a means for circumventing this impossibility. Essentially, we assume that there is a short period of time during which an arbitrary part of the network remains strongly connected, while its interconnect topology may keep changing continuously. We present a consensus algorithm that works under this assumption, and prove its correctness. Our algorithm maintains a local estimate of the communication graphs, and applies techniques for detecting stable network properties and univalent system configurations. Our possibility results are complemented by several impossibility results and lower bounds for consensus and other distributed computing problems like leader election, revealing that our algorithm is asymptotically optimal.

View on arXiv
Comments on this paper