Learning Fuzzy β-Certain and β-Possible rules from incomplete quantitative data by rough sets

The rough-set theory proposed by Pawlak, has been widely used in dealing with data classification problems. The original rough-set model is, however, quite sensitive to noisy data. Tzung thus proposed deals with the problem of producing a set of fuzzy certain and fuzzy possible rules from quantitative data with a predefined tolerance degree of uncertainty and misclassification. This model allowed, which combines the variable precision rough-set model and the fuzzy set theory, is thus proposed to solve this problem. This paper thus deals with the problem of producing a set of fuzzy certain and fuzzy possible rules from incomplete quantitative data with a predefined tolerance degree of uncertainty and misclassification. A new method, incomplete quantitative data for rough-set model and the fuzzy set theory, is thus proposed to solve this problem. It first transforms each quantitative value into a fuzzy set of linguistic terms using membership functions and then finding incomplete quantitative data with lower and the fuzzy upper approximations. It second calculates the fuzzy {\beta}-lower and the fuzzy {\beta}-upper approximations. The certain and possible rules are then generated based on these fuzzy approximations. These rules can then be used to classify unknown objects.
View on arXiv