ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1204.1470
35
70

Bayes and empirical Bayes: do they merge?

6 April 2012
Sonia Petrone
Judith Rousseau
Catia Scricciolo
    FedML
ArXivPDFHTML
Abstract

Bayesian inference is attractive for its coherence and good frequentist properties. However, it is a common experience that eliciting a honest prior may be difficult and, in practice, people often take an {\em empirical Bayes} approach, plugging empirical estimates of the prior hyperparameters into the posterior distribution. Even if not rigorously justified, the underlying idea is that, when the sample size is large, empirical Bayes leads to "similar" inferential answers. Yet, precise mathematical results seem to be missing. In this work, we give a more rigorous justification in terms of merging of Bayes and empirical Bayes posterior distributions. We consider two notions of merging: Bayesian weak merging and frequentist merging in total variation. Since weak merging is related to consistency, we provide sufficient conditions for consistency of empirical Bayes posteriors. Also, we show that, under regularity conditions, the empirical Bayes procedure asymptotically selects the value of the hyperparameter for which the prior mostly favors the "truth". Examples include empirical Bayes density estimation with Dirichlet process mixtures.

View on arXiv
Comments on this paper