31
0

Machine Cognition Models: EPAM and GPS

Abstract

Through history, the human being tried to relay its daily tasks to other creatures, which was the main reason behind the rise of civilizations. It started with deploying animals to automate tasks in the field of agriculture(bulls), transportation (e.g. horses and donkeys), and even communication (pigeons). Millenniums after, come the Golden age with "Al-jazari" and other Muslim inventors, which were the pioneers of automation, this has given birth to industrial revolution in Europe, centuries after. At the end of the nineteenth century, a new era was to begin, the computational era, the most advanced technological and scientific development that is driving the mankind and the reason behind all the evolutions of science; such as medicine, communication, education, and physics. At this edge of technology engineers and scientists are trying to model a machine that behaves the same as they do, which pushed us to think about designing and implementing "Things that-Thinks", then artificial intelligence was. In this work we will cover each of the major discoveries and studies in the field of machine cognition, which are the "Elementary Perceiver and Memorizer"(EPAM) and "The General Problem Solver"(GPS). The First one focus mainly on implementing the human-verbal learning behavior, while the second one tries to model an architecture that is able to solve problems generally (e.g. theorem proving, chess playing, and arithmetic). We will cover the major goals and the main ideas of each model, as well as comparing their strengths and weaknesses, and finally giving their fields of applications. And Finally, we will suggest a real life implementation of a cognitive machine.

View on arXiv
Comments on this paper