ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.0610
41
3

Greedy Multiple Instance Learning via Codebook Learning and Nearest Neighbor Voting

3 May 2012
Gang Chen
Jason J. Corso
ArXivPDFHTML
Abstract

Multiple instance learning (MIL) has attracted great attention recently in machine learning community. However, most MIL algorithms are very slow and cannot be applied to large datasets. In this paper, we propose a greedy strategy to speed up the multiple instance learning process. Our contribution is two fold. First, we propose a density ratio model, and show that maximizing a density ratio function is the low bound of the DD model under certain conditions. Secondly, we make use of a histogram ratio between positive bags and negative bags to represent the density ratio function and find codebooks separately for positive bags and negative bags by a greedy strategy. For testing, we make use of a nearest neighbor strategy to classify new bags. We test our method on both small benchmark datasets and the large TRECVID MED11 dataset. The experimental results show that our method yields comparable accuracy to the current state of the art, while being up to at least one order of magnitude faster.

View on arXiv
Comments on this paper