ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.1988
41
6

Fast Optimal Joint Tracking-Registration for Multi-Sensor Systems

9 May 2012
Shuqing Zeng
ArXivPDFHTML
Abstract

Sensor fusion of multiple sources plays an important role in vehicular systems to achieve refined target position and velocity estimates. In this article, we address the general registration problem, which is a key module for a fusion system to accurately correct systematic errors of sensors. A fast maximum a posteriori (FMAP) algorithm for joint registration-tracking (JRT) is presented. The algorithm uses a recursive two-step optimization that involves orthogonal factorization to ensure numerically stability. Statistical efficiency analysis based on Cram\`{e}r-Rao lower bound theory is presented to show asymptotical optimality of FMAP. Also, Givens rotation is used to derive a fast implementation with complexity O(n) with nnn the number of tracked targets. Simulations and experiments are presented to demonstrate the promise and effectiveness of FMAP.

View on arXiv
Comments on this paper