ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.2629
44
130

Interpretation and Generalization of Score Matching

9 May 2012
Siwei Lyu
ArXivPDFHTML
Abstract

Score matching is a recently developed parameter learning method that is particularly effective to complicated high dimensional density models with intractable partition functions. In this paper, we study two issues that have not been completely resolved for score matching. First, we provide a formal link between maximum likelihood and score matching. Our analysis shows that score matching finds model parameters that are more robust with noisy training data. Second, we develop a generalization of score matching. Based on this generalization, we further demonstrate an extension of score matching to models of discrete data.

View on arXiv
Comments on this paper