ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.2633
36
39

MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts

9 May 2012
M. P. Kumar
D. Koller
ArXivPDFHTML
Abstract

We consider the task of obtaining the maximum a posteriori estimate of discrete pairwise random fields with arbitrary unary potentials and semimetric pairwise potentials. For this problem, we propose an accurate hierarchical move making strategy where each move is computed efficiently by solving an st-MINCUT problem. Unlike previous move making approaches, e.g. the widely used a-expansion algorithm, our method obtains the guarantees of the standard linear programming (LP) relaxation for the important special case of metric labeling. Unlike the existing LP relaxation solvers, e.g. interior-point algorithms or tree-reweighted message passing, our method is significantly faster as it uses only the efficient st-MINCUT algorithm in its design. Using both synthetic and real data experiments, we show that our technique outperforms several commonly used algorithms.

View on arXiv
Comments on this paper