ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.2658
37
20

Optimization of Structured Mean Field Objectives

9 May 2012
Alexandre Bouchard-Coté
Michael I. Jordan
ArXivPDFHTML
Abstract

In intractable, undirected graphical models, an intuitive way of creating structured mean field approximations is to select an acyclic tractable subgraph. We show that the hardness of computing the objective function and gradient of the mean field objective qualitatively depends on a simple graph property. If the tractable subgraph has this property- we call such subgraphs v-acyclic-a very fast block coordinate ascent algorithm is possible. If not, optimization is harder, but we show a new algorithm based on the construction of an auxiliary exponential family that can be used to make inference possible in this case as well. We discuss the advantages and disadvantages of each regime and compare the algorithms empirically.

View on arXiv
Comments on this paper