ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.4120
45
4

Two New Algorithms for Solving Covariance Graphical Lasso Based on Coordinate Descent and ECM

18 May 2012
Hao Wang
ArXivPDFHTML
Abstract

Covariance graphical lasso applies a lasso penalty on the elements of the covariance matrix. This method is useful because it not only produces sparse estimation of covariance matrix but also discovers marginal independence structures by generating zeros in the covariance matrix. We propose and explore two new algorithms for solving the covariance graphical lasso problem. Our new algorithms are based on coordinate descent and ECM. We show that these two algorithms are more attractive than the only existing competing algorithm of Bien and Tibshirani (2011) in terms of simplicity, speed and stability. We also discuss convergence properties of our algorithms.

View on arXiv
Comments on this paper