ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1205.4423
22
2

On the sign of the real part of the Riemann zeta-function

20 May 2012
J. A. D. Reyna
R. Brent
J. Lune
ArXivPDFHTML
Abstract

We consider the distribution of arg⁡ζ(σ+it)\arg\zeta(\sigma+it)argζ(σ+it) on fixed lines σ>12\sigma > \frac12σ>21​, and in particular the density \[d(\sigma) = \lim_{T \rightarrow +\infty} \frac{1}{2T} |\{t \in [-T,+T]: |\arg\zeta(\sigma+it)| > \pi/2\}|\,,\] and the closely related density \[d_{-}(\sigma) = \lim_{T \rightarrow +\infty} \frac{1}{2T} |\{t \in [-T,+T]: \Re\zeta(\sigma+it) < 0\}|\,.\] Using classical results of Bohr and Jessen, we obtain an explicit expression for the characteristic function ψσ(x)\psi_\sigma(x)ψσ​(x) associated with arg⁡ζ(σ+it)\arg\zeta(\sigma+it)argζ(σ+it). We give explicit expressions for d(σ)d(\sigma)d(σ) and d−(σ)d_{-}(\sigma)d−​(σ) in terms of ψσ(x)\psi_\sigma(x)ψσ​(x). Finally, we give a practical algorithm for evaluating these expressions to obtain accurate numerical values of d(σ)d(\sigma)d(σ) and d−(σ)d_{-}(\sigma)d−​(σ).

View on arXiv
Comments on this paper