ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.1386
132
28
v1v2v3v4 (latest)

Robust subspace recovery by geodesically convex optimization

7 June 2012
Teng Zhang
ArXiv (abs)PDFHTML
Abstract

We reintroduce an M-estimator that was implicitly discussed by Tyler in 1987, to robustly recover the underlying linear model from a data set contaminated by outliers. We prove that the objective function of this estimator is geodesically convex on the manifold of all positive definite matrices, and propose a fast algorithm that obtains its unique minimum. Besides, we prove that when inliers (i.e., points that are not outliers) are sampled from a subspace and the percentage of outliers is bounded by some number, then under some very weak assumptions this algorithm can recover the underlying subspace exactly. We also show that our algorithm compares favorably with other convex algorithms of robust PCA empirically.

View on arXiv
Comments on this paper