ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.4628
85
43

Robust PCA in High-dimension: A Deterministic Approach

18 June 2012
Jiashi Feng
Huan Xu
Shuicheng Yan
ArXiv (abs)PDFHTML
Abstract

We consider principal component analysis for contaminated data-set in the high dimensional regime, where the dimensionality of each observation is comparable or even more than the number of observations. We propose a deterministic high-dimensional robust PCA algorithm which inherits all theoretical properties of its randomized counterpart, i.e., it is tractable, robust to contaminated points, easily kernelizable, asymptotic consistent and achieves maximal robustness -- a breakdown point of 50%. More importantly, the proposed method exhibits significantly better computational efficiency, which makes it suitable for large-scale real applications.

View on arXiv
Comments on this paper