ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.6460
35
20

Output Space Search for Structured Prediction

27 June 2012
J. Doppa
Alan Fern
Prasad Tadepalli
ArXivPDFHTML
Abstract

We consider a framework for structured prediction based on search in the space of complete structured outputs. Given a structured input, an output is produced by running a time-bounded search procedure guided by a learned cost function, and then returning the least cost output uncovered during the search. This framework can be instantiated for a wide range of search spaces and search procedures, and easily incorporates arbitrary structured-prediction loss functions. In this paper, we make two main technical contributions. First, we define the limited-discrepancy search space over structured outputs, which is able to leverage powerful classification learning algorithms to improve the search space quality. Second, we give a generic cost function learning approach, where the key idea is to learn a cost function that attempts to mimic the behavior of conducting searches guided by the true loss function. Our experiments on six benchmark domains demonstrate that using our framework with only a small amount of search is sufficient for significantly improving on state-of-the-art structured-prediction performance.

View on arXiv
Comments on this paper