ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1207.6606
48
2

Weighted sampling, Maximum Likelihood and minimum divergence estimators

27 July 2012
M. Broniatowski
Zhansheng Cao
ArXiv (abs)PDFHTML
Abstract

This paper explores Maximum Likelihood in parametric models in the context of Sanov type Large Deviation Probabilities. MLE in parametric models under weighted sampling is shown to be associated with the minimization of a specific divergence criterion defined with respect to the distribution of the weights. Some properties of the resulting inferential procedure are presented; Bahadur efficiency of tests are also considered in this context.

View on arXiv
Comments on this paper