The Affinely Invariant Distance Correlation
Sz\'ekely, Rizzo and Bakirov (2007) and Sz\'ekely and Rizzo (2009), in two seminal papers, introduced the powerful concept of distance correlation as a measure of dependence between sets of random variables. We study in this paper an affinely invariant version of the distance correlation and an empirical version of that distance correlation, and we establish the consistency of the empirical quantity. In the case of subvectors of a multivariate normally distributed random vector, we provide exact expressions for the distance correlation in both finite-dimensional and asymptotic settings. To illustrate our results, we consider time series of wind vectors at the Stateline wind energy center in Oregon and Washington, and we derive the empirical auto and cross distance correlation functions between wind vectors at distinct meteorological stations.
View on arXiv