ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1210.4841
97
29

An Efficient Message-Passing Algorithm for the M-Best MAP Problem

16 October 2012
Dhruv Batra
ArXiv (abs)PDFHTML
Abstract

Much effort has been directed at algorithms for obtaining the highest probability configuration in a probabilistic random field model known as the maximum a posteriori (MAP) inference problem. In many situations, one could benefit from having not just a single solution, but the top M most probable solutions known as the M-Best MAP problem. In this paper, we propose an efficient message-passing based algorithm for solving the M-Best MAP problem. Specifically, our algorithm solves the recently proposed Linear Programming (LP) formulation of M-Best MAP [7], while being orders of magnitude faster than a generic LP-solver. Our approach relies on studying a particular partial Lagrangian relaxation of the M-Best MAP LP which exposes a natural combinatorial structure of the problem that we exploit.

View on arXiv
Comments on this paper