ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1211.1043
60
7

Soft (Gaussian CDE) regression models and loss functions

5 November 2012
Jose Hernandez-Orallo
    UQCV
ArXiv (abs)PDFHTML
Abstract

Regression, unlike classification, has lacked a comprehensive and effective approach to deal with cost-sensitive problems by the reuse (and not a re-training) of general regression models. In this paper, a wide variety of cost-sensitive problems in regression (such as bids, asymmetric losses and rejection rules) can be solved effectively by a lightweight but powerful approach, consisting of: (1) the conversion of any traditional one-parameter crisp regression model into a two-parameter soft regression model, seen as a normal conditional density estimator, by the use of newly-introduced enrichment methods; and (2) the reframing of an enriched soft regression model to new contexts by an instance-dependent optimisation of the expected loss derived from the conditional normal distribution.

View on arXiv
Comments on this paper