ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1212.0534
113
8
v1v2 (latest)

Split Sampling: Expectations, Normalisation and Rare Events

3 December 2012
J. Birge
Changgee Chang
Nicholas G. Polson
ArXiv (abs)PDFHTML
Abstract

In this paper we develop a methodology that we call split sampling methods to estimate high dimensional expectations and rare event probabilities. Split sampling uses an auxiliary variable MCMC simulation and expresses the expectation of interest as an integrated set of rare event probabilities. We derive our estimator from a Rao-Blackwellised estimate of a marginal auxiliary variable distribution. We illustrate our method with two applications. First, we compute a shortest network path rare event probability and compare our method to estimation to a cross entropy approach. Then, we compute a normalisation constant of a high dimensional mixture of Gaussians and compare our estimate to one based on nested sampling. We discuss the relationship between our method and other alternatives such as the product of conditional probability estimator and importance sampling. The methods developed here are available in the R package: SplitSampling.

View on arXiv
Comments on this paper