ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1212.1824
88
540

Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes

8 December 2012
Ohad Shamir
Tong Zhang
ArXivPDFHTML
Abstract

Stochastic Gradient Descent (SGD) is one of the simplest and most popular stochastic optimization methods. While it has already been theoretically studied for decades, the classical analysis usually required non-trivial smoothness assumptions, which do not apply to many modern applications of SGD with non-smooth objective functions such as support vector machines. In this paper, we investigate the performance of SGD without such smoothness assumptions, as well as a running average scheme to convert the SGD iterates to a solution with optimal optimization accuracy. In this framework, we prove that after T rounds, the suboptimality of the last SGD iterate scales as O(log(T)/\sqrt{T}) for non-smooth convex objective functions, and O(log(T)/T) in the non-smooth strongly convex case. To the best of our knowledge, these are the first bounds of this kind, and almost match the minimax-optimal rates obtainable by appropriate averaging schemes. We also propose a new and simple averaging scheme, which not only attains optimal rates, but can also be easily computed on-the-fly (in contrast, the suffix averaging scheme proposed in Rakhlin et al. (2011) is not as simple to implement). Finally, we provide some experimental illustrations.

View on arXiv
Comments on this paper