ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1212.2480
44
117

Approximate Inference and Constrained Optimization

19 October 2012
Tom Heskes
Kees Albers
H. Kappen
    3DV
ArXivPDFHTML
Abstract

Loopy and generalized belief propagation are popular algorithms for approximate inference in Markov random fields and Bayesian networks. Fixed points of these algorithms correspond to extrema of the Bethe and Kikuchi free energy. However, belief propagation does not always converge, which explains the need for approaches that explicitly minimize the Kikuchi/Bethe free energy, such as CCCP and UPS. Here we describe a class of algorithms that solves this typically nonconvex constrained minimization of the Kikuchi free energy through a sequence of convex constrained minimizations of upper bounds on the Kikuchi free energy. Intuitively one would expect tighter bounds to lead to faster algorithms, which is indeed convincingly demonstrated in our simulations. Several ideas are applied to obtain tight convex bounds that yield dramatic speed-ups over CCCP.

View on arXiv
Comments on this paper