ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1212.5637
68
47

Random Spanning Trees and the Prediction of Weighted Graphs

21 December 2012
Nicolò Cesa-Bianchi
Claudio Gentile
Fabio Vitale
Giovanni Zappella
ArXivPDFHTML
Abstract

We investigate the problem of sequentially predicting the binary labels on the nodes of an arbitrary weighted graph. We show that, under a suitable parametrization of the problem, the optimal number of prediction mistakes can be characterized (up to logarithmic factors) by the cutsize of a random spanning tree of the graph. The cutsize is induced by the unknown adversarial labeling of the graph nodes. In deriving our characterization, we obtain a simple randomized algorithm achieving in expectation the optimal mistake bound on any polynomially connected weighted graph. Our algorithm draws a random spanning tree of the original graph and then predicts the nodes of this tree in constant expected amortized time and linear space. Experiments on real-world datasets show that our method compares well to both global (Perceptron) and local (label propagation) methods, while being generally faster in practice.

View on arXiv
Comments on this paper