ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.6677
313
332

Relative Loss Bounds for On-line Density Estimation with the Exponential Family of Distributions

Machine-mediated learning (ML), 1999
23 January 2013
Katy S. Azoury
Manfred K. Warmuth
ArXiv (abs)PDFHTML
Abstract

We consider on-line density estimation with a parameterized density from the exponential family. The on-line algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss which is the negative log-likelihood of the example w.r.t. the past parameter of the algorithm. An off-line algorithm can choose the best parameter based on all the examples. We prove bounds on the additional total loss of the on-line algorithm over the total loss of the off-line algorithm. These relative loss bounds hold for an arbitrary sequence of examples. The goal is to design algorithms with the best possible relative loss bounds. We use a certain divergence to derive and analyze the algorithms. This divergence is a relative entropy between two exponential distributions.

View on arXiv
Comments on this paper