ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1302.4549
183
38
v1v2 (latest)

Breaking the Small Cluster Barrier of Graph Clustering

19 February 2013
Nir Ailon
Yudong Chen
Huan Xu
ArXiv (abs)PDFHTML
Abstract

This paper investigates graph clustering in the planted cluster model in the presence of {\em small clusters}. Traditional results dictate that for an algorithm to provably correctly recover the clusters, {\em all} clusters must be sufficiently large (in particular, Ω~(n)\tilde{\Omega}(\sqrt{n})Ω~(n​) where nnn is the number of nodes of the graph). We show that this is not really a restriction: by a more refined analysis of the trace-norm based recovery approach proposed in Jalali et al. (2011) and Chen et al. (2012), we prove that small clusters, under certain mild assumptions, do not hinder recovery of large ones. Based on this result, we further devise an iterative algorithm to recover {\em almost all clusters} via a "peeling strategy", i.e., recover large clusters first, leading to a reduced problem, and repeat this procedure. These results are extended to the {\em partial observation} setting, in which only a (chosen) part of the graph is observed.The peeling strategy gives rise to an active learning algorithm, in which edges adjacent to smaller clusters are queried more often as large clusters are learned (and removed). From a high level, this paper sheds novel insights on high-dimensional statistics and learning structured data, by presenting a structured matrix learning problem for which a one shot convex relaxation approach necessarily fails, but a carefully constructed sequence of convex relaxationsdoes the job.

View on arXiv
Comments on this paper