ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.1499
57
11

Using Tree-Decomposable Structures to Approximate Belief Networks

6 March 2013
S. Sarkar
    TPM
ArXivPDFHTML
Abstract

Tree structures have been shown to provide an efficient framework for propagating beliefs [Pearl,1986]. This paper studies the problem of finding an optimal approximating tree. The star decomposition scheme for sets of three binary variables [Lazarsfeld,1966; Pearl,1986] is shown to enhance the class of probability distributions that can support tree structures; such structures are called tree-decomposable structures. The logarithm scoring rule is found to be an appropriate optimality criterion to evaluate different tree-decomposable structures. Characteristics of such structures closest to the actual belief network are identified using the logarithm rule, and greedy and exact techniques are developed to find the optimal approximation.

View on arXiv
Comments on this paper