ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1303.2685
79
82

Bilateral Filter: Graph Spectral Interpretation and Extensions

11 March 2013
Akshay Gadde
S. K. Narang
Antonio Ortega
ArXiv (abs)PDFHTML
Abstract

In this paper we study the bilateral filter proposed by Tomasi and Manduchi, as a spectral domain transform defined on a weighted graph. The nodes of this graph represent the pixels in the image and a graph signal defined on the nodes represents the intensity values. Edge weights in the graph correspond to the bilateral filter coefficients and hence are data adaptive. Spectrum of a graph is defined in terms of the eigenvalues and eigenvectors of the graph Laplacian matrix. We use this spectral interpretation to generalize the bilateral filter and propose more flexible and application specific spectral designs of bilateral-like filters. We show that these spectral filters can be implemented with k-iterative bilateral filtering operations and do not require expensive diagonalization of the Laplacian matrix.

View on arXiv
Comments on this paper