ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.1141
85
89

An Empirical Analysis of Likelihood-Weighting Simulation on a Large, Multiply-Connected Belief Network

27 March 2013
M. Shwe
G. Cooper
ArXivPDFHTML
Abstract

We analyzed the convergence properties of likelihood- weighting algorithms on a two-level, multiply connected, belief-network representation of the QMR knowledge base of internal medicine. Specifically, on two difficult diagnostic cases, we examined the effects of Markov blanket scoring, importance sampling, demonstrating that the Markov blanket scoring and self-importance sampling significantly improve the convergence of the simulation on our model.

View on arXiv
Comments on this paper