ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.1504
94
328

Weighing and Integrating Evidence for Stochastic Simulation in Bayesian Networks

27 March 2013
R. Fung
Kuo-Chu Chang
ArXivPDFHTML
Abstract

Stochastic simulation approaches perform probabilistic inference in Bayesian networks by estimating the probability of an event based on the frequency that the event occurs in a set of simulation trials. This paper describes the evidence weighting mechanism, for augmenting the logic sampling stochastic simulation algorithm [Henrion, 1986]. Evidence weighting modifies the logic sampling algorithm by weighting each simulation trial by the likelihood of a network's evidence given the sampled state node values for that trial. We also describe an enhancement to the basic algorithm which uses the evidential integration technique [Chin and Cooper, 1987]. A comparison of the basic evidence weighting mechanism with the Markov blanket algorithm [Pearl, 1987], the logic sampling algorithm, and the evidence integration algorithm is presented. The comparison is aided by analyzing the performance of the algorithms in a simple example network.

View on arXiv
Comments on this paper