ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1304.4453
110
146
v1v2v3v4 (latest)

Engineering Parallel Algorithms for Community Detection in Massive Networks

16 April 2013
Christian Staudt
Henning Meyerhenke
    GNN
ArXiv (abs)PDFHTML
Abstract

The amount of graph-structured data has recently experienced an enormous growth in many applications. To transform such data into useful information, fast analytics algorithms and software tools are necessary. One common graph analytics kernel is disjoint community detection (or graph clustering). Despite extensive research on heuristic solvers for this task, only few parallel codes exist, although parallelism will be necessary to scale to the data volume of real-world applications. We address the deficit in computing capability by a flexible and extensible community detection framework with shared-memory parallelism. Within this framework we design and implement efficient parallel community detection heuristics: A parallel label propagation scheme; the first large-scale parallelization of the well-known Louvain method, as well as an extension of the method adding refinement; and an ensemble scheme combining the above. In extensive experiments driven by the algorithm engineering paradigm, we identify the most successful parameters and combinations of these algorithms. We also compare our implementations with state of the art competitors. The processing rate of our fastest algorithm often reaches 50M edges/second, making it suitable for massive data sets with billions of edges. We recommend the parallel Louvain method and our variant with refinement as both qualitatively strong and fast.

View on arXiv
Comments on this paper