ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1305.0355
54
21

Model Selection for High-Dimensional Regression under the Generalized Irrepresentability Condition

2 May 2013
Adel Javanmard
Andrea Montanari
ArXivPDFHTML
Abstract

In the high-dimensional regression model a response variable is linearly related to ppp covariates, but the sample size nnn is smaller than ppp. We assume that only a small subset of covariates is `active' (i.e., the corresponding coefficients are non-zero), and consider the model-selection problem of identifying the active covariates. A popular approach is to estimate the regression coefficients through the Lasso (ℓ1\ell_1ℓ1​-regularized least squares). This is known to correctly identify the active set only if the irrelevant covariates are roughly orthogonal to the relevant ones, as quantified through the so called `irrepresentability' condition. In this paper we study the `Gauss-Lasso' selector, a simple two-stage method that first solves the Lasso, and then performs ordinary least squares restricted to the Lasso active set. We formulate `generalized irrepresentability condition' (GIC), an assumption that is substantially weaker than irrepresentability. We prove that, under GIC, the Gauss-Lasso correctly recovers the active set.

View on arXiv
Comments on this paper