540

Phase Retrieval using Alternating Minimization

IEEE Transactions on Signal Processing (IEEE Trans. Signal Process.), 2013
Abstract

Phase retrieval problems involve solving linear equations, but with missing sign (or phase, for complex numbers) information. Over the last two decades, a popular generic empirical approach to the many variants of this problem has been one of alternating minimization; i.e. alternating between estimating the missing phase information, and the candidate solution. In this paper, we show that a simple alternating minimization algorithm geometrically converges to the solution of one such problem -- finding a vector xx from y,Ay,A, where y=ATxy = |A^T x| and z|z| denotes a vector of element-wise magnitudes of zz -- under the assumption that AA is Gaussian. Empirically, our algorithm performs similar to recently proposed convex techniques for this variant (which are based on "lifting" to a convex matrix problem) in sample complexity and robustness to noise. However, our algorithm is much more efficient and can scale to large problems. Analytically, we show geometric convergence to the solution, and sample complexity that is off by log factors from obvious lower bounds. We also establish close to optimal scaling for the case when the unknown vector is sparse. Our work represents the only known theoretical guarantee for alternating minimization for any variant of phase retrieval problems in the non-convex setting.

View on arXiv
Comments on this paper