371

Spectral Convergence of the Connection Laplacian from random samples

Abstract

Spectral methods that are based on eigenvectors and eigenvalues of discrete graph Laplacians, such as Diffusion Maps and Laplacian Eigenmaps are extremely useful for manifold learning. It was previously shown by Belkin and Niyogi \cite{belkin_niyogi:2007} that the eigenvectors and eigenvalues of the graph Laplacian converge to the eigenfunctions and eigenvalues of the Laplace-Beltrami operator of the manifold in the limit of infinitely many uniformly sampled data points. Recently, we introduced Vector Diffusion Maps and showed that the Connection Laplacian of the tangent bundle of the manifold can be approximated from random samples. In this paper, we present a unified framework for approximating other Connection Laplacians over the manifold by considering its principle bundle structure. We prove that the eigenvectors and eigenvalues of these Laplacians converge in the limit of infinitely many random samples. Our results for spectral convergence also hold in the case where the data points are sampled from a non-uniform distribution, and for manifolds with and without boundary.

View on arXiv
Comments on this paper