936
v1v2 (latest)

Confidence Intervals and Hypothesis Testing for High-Dimensional Regression

Journal of machine learning research (JMLR), 2013
Abstract

Fitting high-dimensional statistical models often requires the use of non-linear parameter estimation procedures. As a consequence, it is generally impossible to obtain an exact characterization of the probability distribution of the parameter estimates. This in turn implies that it is extremely challenging to quantify the \emph{uncertainty} associated with a certain parameter estimate. Concretely, no commonly accepted procedure exists for computing classical measures of uncertainty and statistical significance as confidence intervals or pp-values for these models. We consider here high-dimensional linear regression problem, and propose an efficient algorithm for constructing confidence intervals and pp-values. The resulting confidence intervals have nearly optimal size. When testing for the null hypothesis that a certain parameter is vanishing, our method has nearly optimal power. Our approach is based on constructing a `de-biased' version of regularized M-estimators. The new construction improves over recent work in the field in that it does not assume a special structure on the design matrix. We test our method on synthetic data and a high-throughput genomic data set about riboflavin production rate.

View on arXiv
Comments on this paper